
1. Database Support for the SLS Artemis-2 Booster Separation by Allen Ruan, UC Berkeley,
CA

2. One Dimensional Point Distribution using Geometric Stretching by Sam Aslam, Wesleyan
University, CT

3. Development of a Triangulation Quality Checker for LAVA by Jacob Zenger, University of
Utah, UT

4. Development of a Utility to Automatically Generate Trajectory Files Based
on User Prescribed Motions by Keshav Sriram, Diamond Bar High School, CA

5. Development of a Mesh Redistribution Algorithm for Structured Curvilinear Meshes by
Chase Ashby, University of Kentucky, KY

6. Uncertainty Quantification with Cart3D and QUEST by Liam Smith, Georgia Tech, GA

7. Unstructured CFD support for Commercial Supersonic Technology Wind Tunnel Tests by
Robert Comstock (Cal Poly San Luis Obispo, CA) and William Bowes (UC Davis, CA)

Advanced Modeling & Simulation Seminar Series,
NASA Ames Research Center July 30, 2019

Computational Aerosciences Branch Summer Intern Presentations

Database Support for the SLS
Artemis 2 Booster Separation

Allen Ruan
UC Berkeley, CA

July 30, 2019

Motivation

Wind Tunnel
CFD Database

Flight
CFD Database

Wind Tunnel

Flight

SLS CFD

uncertainty

Utilized CAPE tools to run and post-process CFD simulations on NAS
Supercomputers to support the development of the booster separation
database for SLS Artemis 2

Post-Processing

Movie

Individual Stats

Wind Tunnel Flight Total

BSM on BSM off Nominal CSE 1 Out

Cases
Run

103 504 1760 1050 3417

Approx.
Core
Hours

9.3 million

Reflections

Learning/Growth
• How to read/interpret CFD plots
• Introduced to the many components of creating a database including writing

modules in Python
• Utilizing tecplot, overgrid, and pyfun
• Interfacing with BASH terminals, vim, and supercomputers (pfe/lfe)
• Documentation of reports using Sphinx
• Adapting to SLS CFD team

Future Improvement
• Write more scripts to further automate/optimize certain processes to facilitate

creating and analyzing databases.
• Continued/Expanded rigorous documentation of processes, errors, successes

Acknowledgements
• Dr. Cetin Kiris
• SLS CFD Team – Dr. Stuart Rogers, Dr. Derek Dalle, Henry Lee, Jamie Meeroff
• Interns

Thank you

1-D Point Distribution using Geometric Stretching
with Uniform Padding

Samuel Aslam
Wesleyan University, CT

July 30 2019

Introduction

ABSTRACT Extending geometric stretching methodology
that allows for spacing to be specified from one or both
ends. Taking maximum stretching ratio and maximum
spacing as input variables the goal is to have a point
distribution function that satisfies the given constraints by
potentially using the least amount of points.

BIO Samuel Aslam. Rising senior at Wesleyan University
pursuing a B.A in Mathematics.

MENTORS William. M. Chan, Shishir Pandya

Objective
● A grid is discrete representation of a geometric object and it should have the

appropriate point distribution to resolve the geometry and the flow physics.

● Hyperbolic Tangent Stretching:
○ Inputs:

■ Domain size
■ Number of points
■ Spacing at one or both ends

○ Varying stretching ratio

● Geometric Stretching:
○ Inputs:

■ Domain size
■ Number of points
■ Spacing at one end only

○ Constant stretching ratio

● Typical usage:

○ specify spacing at one or both ends
○ maximum spacing
○ maximum stretching ratio

Objective:
Develop a python function to
explore geometric stretching
with typical usage constraints

● Given
○ domain D
○ initial spacing Δsᵢ
○ maximum spacing Δsmax
○ maximum stretching ratio rmax

● Find a point distribution that satisfies the constraints with as few points as
possible.

● Case 1 (stretched region only, largest Δs < Δsmax)

● Case 2 (stretched + uniform region)

One-Sided Geometric Stretching with Uniform Padding

One-Sided Case 2
Stretched Region + Uniform Region

1) Build point distribution from Δsᵢ, stretch using rmax until reaches
Δsmax

2) Pad remaining domain with uniform spacing = last spacing from
stretched region (Δsᵤ)

3) Calculate m = number of uniform spacings
4) n = number of points from Δsᵢ side
5) Solve equation for r

Two-Sided Geometric Stretching with Uniform Padding

● Given
○ domain D
○ initial spacing Δsᵢ
○ end spacing Δsₑ
○ maximum spacing Δsmax
○ maximum stretching ratio rmax

● Find a point distribution that satisfies the constraints with as few points as
possible.

● Case 1
○ b1 + b2 > D
○ Δs does not hit Δsmax from either side

● Case 2
○ b1 + b2 > D
○ Series hit Δsmax from one side only

● Case 3

○ b1 + b2 < D
○ Series hit Δsmax from both sides

Distance reached by
stretching at rmaxfrom Δsᵢ

Distance reached by
stretching at rmax from Δse

b
1

b
2

Δsᵢ

Two-Sided Case 1

1) Build point distribution from Δsᵢ and Δsₑ, stretch using rmax but Δsmax never
reached. Stop when sum of both sides (b₁ + b₂) exceeds domain D

2) n = number of points from Δsᵢ side
m = number of points from Δsₑ side

1) Solve equation for r

Two-Sided Case 2
1) Build point distribution from Δsᵢ and Δsₑ, stretch using rmax until Δsmax

reached from one side only
2) Build point distribution from other side until sum of both sides (b₁ + b₂)

exceeds domain D
3) n = number of points from Δsᵢ side
4) Solve equation for r

Two-Sided Case 3

1) Build point distribution from Δsᵢ and Δsₑ, stretch using rmax, Δsₘₐₓ reached
from both sides.

2) Pad the remaining part of domain using Δsᵤ = min of end spacing from
each side

3) n = number of points from Δsᵢ side
m = number of points from Δsₑ side
p = number of spacings in uniform region

Freeze one side solve the equation for r (one-sided case # 2)

4)

Reflections
• A pivotal experience

• Work with the best minds

• Value of teamwork and diligence

• Real-life application

• Appreciation towards mathematical education

• Grateful to mentors, colleagues and everyone in the branch

Development of a Triangulation Quality
Checker for LAVA

Jacob Zenger
University of Utah

July 30, 2019

Motivation
• There is no intersection testing

currently available within the LAVA
framework

• There are many redundancies when
converting from a .stl to a .i.tri

• It can detect things that would be
virtually invisible

• It provides a consolidated tool to
automatically fix .i.tri files

Code Overview
• Input files are either .stl or .i.tri
• Finds any duplicate or unused

vertices and eliminates them from
the file

• Checks for any intersections that
may have occurred in the file

• Fixes any face normal vector
errors

• Detects whether an object is
open or closed

• Outputs a .i.tri file with any
intersections highlighted

Finding Duplicate Vertices
• Many duplicate vertices are created when converting from .stl to .i.tri

• The area gets divided into equally spaced bins

• Bin locations get tweaked to have a more even number of vertices in each one

• Vertices in the same bin are then checked against each other

Blue shows the
distribution before
tweaking the bin
locations and red
is after tweaking

Timing Results
• The largest speed-up in code execution time came from an effective

binning of the vertices
• Without binning, a file with 1000 data vertices could take 499500

comparisons to find duplicates but, when binned in 10 bins would be
reduced to only 49500 comparisons

• The largest file that was run took over 30 minutes when no tweaking
occurred and around 12 seconds when it did

Finding Intersections
• Line/Plane Intersection Testing

• Convert triangle into a plane
• Convert line segment into a line
• Find where the line and plane

intersect
• Check if that point lies within the

triangle and the line segment

• Edge Testing

• Above technique will not catch
when an intersection occurs at
one of the vertices

• Checks if an ending edge creates
a closed loop or loops – when it
does not there is an intersection

• It checks for any edges that have
more than two faces adjacent to it

Internship Summary

• I enjoyed using my coding knowledge in a
professional setting

• Extended my knowledge in data processing
techniques

• Enjoyed working with fellow interns and mentors

Development of a Utility to Automatically
Generate Trajectory Files based on User Input

Keshav Sriram
Diamond Bar High School, Grade 12

July 30, 2019

Purpose
• This trajectory file generator is a Python script that takes

two XML files which specify the components and their
motions as input and outputs a trajectory file which can
then be used to model that motion in a flow solver such as
LAVA

• The XML file is based on the one created by William Chan
in An Interface for Specifying Rigid-Body Motions for CFD
Applications

• The interface will eventually be used to create trajectory
files for rotorcraft

Outline
• Prescribed Motion

– Config.xml
– Scenario.xml

• Trajectory File

• Examples
– Drone
– Bee

• Internship Summary

XML Files
• Config.xml

– Lists all structures and containers
used in the file
• Structure type objects are

represented by actual grids
• Containers represent a

group of grids or an
additional motion applied to
a grid

• Trajectory files are created
for structures but not for
containers

– List parent of each item to create
a hierarchy
• Hierarchies are represented

using hierarchy charts
• All motions prescribed for

objects higher up in the
hierarchy apply to all of their
children as well

Main Body 2

Main Body

Back
Right
Blade

Front
Left

Blade

Back
Left

Blade

Front
Left

Rotor

Front
Right
Rotor

Front
Right
Blade

XML Files
• Scenario.xml

– Lists all prescribed motions for
the objects in the Config.xml file

– Two types of prescribed motions:
rotations and translations
• Rotations must be specified

with a rotation axis, center,
and a speed of rotation

• Translations must be
specified using the x, y, and
z components of the velocity
of translation.

– Motions are applied in a certain
order
• Motions of higher order

components are applied
before motions of lower
order components

• Rotations are applied before
translations

Rotation A

Translation A
Rotation B

Rotation C

Translation B

Rotation A

Rotation A
Rotation B

Translation A

Rotation A
Rotation B

Translation A
Translation B

Rotation A
Rotation B

Translation A
Translation B

Rotation C

Trajectory File
• 7 columns of data
• Time

– Shows the time from the start of the motion
– Organized in a constant interval (Δt)

• Translation
– Three columns: Δx, Δy, Δz
– Displacement of the object center from its position at t = 0

• Rotation
– Three columns: θx, θy, θz
– Angles are in radians
– Rotation of the body axes about the x, y, and z axes
– Order of rotation:

• About the z-axis
• About the y-axis
• About the x-axis

Drone Example

Bee Example

Internship Summary
• It was a great learning experience working on difficult problems such

as this one

• This internship greatly increased my expertise in coding and taught me
several more programming languages

• This internship helped me get much more interested in programming
than I had been before

• It was fun to meet new people with similar interests to mine and talk to
them about their fields of expertise

• Thanks to James Jensen, William Chan, Shishir Pandya, Gerrit Stich,
Cetin Kiris, and all the other Computational Aerosciences interns for
everything you have done.

Development of a Mesh Redistribution Algorithm
for Structured Curvilinear Meshes

Chase Ashby
University of Kentucky

07/30/2019

Motivation

• Tasked with developing mesh
redistribution algorithm for
implementation in LAVA

• Compared 1D equidistribution
algorithm to nonlinear
programming (NLP) approach

• Redistribution maintains
computational costs while
increasing accuracy

Equidistribution Approach

Balance equation:

Definition of weights:

Nonlinear Programming Approach

• Implemented using pyOptsparse
• Optimizer: SLSQP

l Han-Powell quasi-Newton method
l Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS)

Testing

Uniform mesh
with 1000 nodes:
5.15E-10

Testing

Conclusions/Future Work

l

“The Role of Mesh Generation, Adaptation, and Refinement on the Computation of Flows
Featuring Strong Shock,” Bonfiglioli, A., Paciorri, R., and Di Mascio, A., Modeling and
Simulation in Engineering, doi:10.1155/2012/631276.

Internship Experience

• Reflections:
l Gained practical experience in Python and Fortran
l Explored Calculus of Variations, tensor analysis,

Riemannian Geometry
l Great team and working environment

THANK YOU!

Acknowledgements: Dr. Jeff Housman, Dr. Gaetan Kenway, Gerrit-
Daniel Stich, James Jensen, Dr. Cetin Kiris, Keshav Sriram, Jacob
Zenger

Uncertainty Quantification with
Cart3D and QUEST

Liam Smith (Georgia Tech)

Mentor: Marian Nemec

30 July 2019

Background and Motivation

• Cart3D
- CFD analysis package utilizing adjoint-driven mesh adaptation
- Given specific geometry and flow conditions we can efficiently compute

aerodynamic performance of an aircraft

• Actual operating conditions are never known exactly
- Can we quantify the uncertainty in aircraft performance given uncertainty in

operating conditions?

• QUEST - Quantified Uncertainty with Error bounds Software Toolkit

- Developed by Timothy Barth

- Quantifies the uncertainty of engineering outputs, such as lift and drag, pressure
signatures and surface pressure distributions

- Couples CFD discretization error with statistical error estimates

• Objectives:
- Integrate Cart3D with QUEST

- Characterize the uncertainty in near-body pressure signatures of supersonic
aircraft

4
5

Selected Examples

1) NACA 0012 Airfoil
- Nominal Flow Conditions

l Mach = 1.4
l Alpha = 1.0°

2) Low-Boom Flight Demonstrator
(LBFD)

- Nominal Flow Conditions
l Mach = 1.4
l Alpha = 2.1°

l Output: Pressure Distribution

- NACA 0012: Line Sensor 1 body length
below airfoil

- LBFD: Line Sensor 3 body lengths
below aircraft

4
6

QUEST Overview

• QUEST Prep
- Specify uncertainty parameters and distributions

l Mach number
- Normal probability density function

(PDF)
- NACA 0012: Mean = 1.4, σ = 0.1

- Choose a method
l Nested Dense Clenshaw-Curtis Quadrature

(6 levels)

- Database of individual CFD runs (realizations)

l NACA 0012: 33 realizations

• QUEST Post
- Input CFD results for each realization
- Compute uncertainty statistics

4
7

NACA 0012

NACA 0012 - Realizations

4
8

Mach = 1.1 Mach = 1.7

NACA 0012 – Aggregate PDF

4
9

5
0

NACA 0012 – PDF Slices

5
1

LBFD – PDF Slices

Conclusion and Future Work

l Demonstrated ability to characterize uncertainty in pressure
distributions along line sensors

- PDF plots allow visualization of most likely pressure values given
uncertainty in flight conditions

l Applicable to complex problems such as the LBFD

- Could be very useful in characterizing uncertainty in the ground-level
noise profile due to variations in flight and atmospheric conditions

l Future Work

- More sources of uncertainty
l Control surface deflections
l Aeroelastic deformations
l Atmospheric properties

- Apply to ground signatures and level of noise

52

Questions?

Unstructured CFD Support for Commercial
Supersonic Technology Wind Tunnel Tests

Robert Comstock
Cal Poly San Luis Obispo, CA

and

William Bowes
University of California, Davis

July 30th, 2019

Abstract and Bio

William Bowes
• Senior at University of California,

Davis
• Mechanical engineer undergraduate
• Experience in multiple industries such

as Velodyne and Tesla
• Structures lead for UCD Formula

Racing engineering team

Robert Comstock
• Graduate student at California Polytechnic

State University San Luis Obispo
• Concentration in aeronautics
• Worked remotely for the LAVA group

during the school year and on-site during
the summer

• Aero lead for Cal Poly Formula SAE

Abstract:
The NASA Ames wind tunnel division has been testing Commercial Supersonic
Technology (CST) design concepts in different wind tunnel test sections. William
and Robert from the LAVA group provided CFD support by running simulations of
upcoming wind tunnel tests with unstructured grids generated from STAR-CCM+
and Pointwise. Near-body pressure signatures were measured from the
simulations to predict the impact that newly designed struts in the test sections
may have on the test data for the CST concept models.

Commercial Supersonic Technology (CST)
• Aimed at developing technologies in order to enable commercial supersonic

flights over land
• Entails the development of low boom supersonic aircraft designs as well as

technologies that make these advanced designs possible
• Project is multi-disciplinary covering all aspects of aircraft design

LAVA Team's Contribution to CST
• The LAVA team contributes to the CST project by developing CFD

methodologies for simulating low boom supersonic aircraft

- Help support wind tunnel tests by performing CFD prior to the experiment

- Utilize the wind tunnel data from the experiments to validate and further
develop computational tools specifically aimed at aerodynamic and sonic
boom performance

• Upcoming wind tunnel test of Low Boom Flight Demonstrator (LBFD)

- 11ft x 11ft test section at ARC Unitary Wind Tunnel
• Strut needs to be redesigned to withstand side force loads

- A previous test in the 11ft x 11ft test section with a CST model showed that
the strut had large oscillations

- Strut must also have minimal impact on pressure rail readings

- Lockheed-Martin 1044 model will be used as test subject for new strut

- Mach 1.1, 1.2, 1.3, 1.4, and 1.45

- Angle of attack of -2, 2.1, and 6

Upcoming Wind Tunnel Test

Pressure Rail

(not to scale)

Strut Area of
Interest

u

STAR-CCM+ meshing

• LAVA group is providing unstructured CFD support for wind tunnel test

• STAR-CCM+ used for grid generation

- Robust and quick to prepare

• Polyhedral cell geometry utilized for nearfield

• Farfield generated from extruded nearfield cell surfaces at proper Mach angle

Refinement Study
• Performed refinement study for mesh sensitivity
• Adjusted overall base cell size and underbody refinement cell size

- Increased and decreased base cell sizes
• Original base mesh appeared to have sufficient resolution

- Pressure signature and loads of CST model were relatively unchanged

- Mach 1.45, AOA = 2.1, H/L = 3.1435

- Downstream signatures of less importance

Results

• Latest results show very little impact on front part of signature
• Aft area shows slight deviation at lower Mach

Mach 1.2, AOA = 2.1°, H/L = 3.1435

Model Signature

Strut
Signature

Results

• Latest results show very little impact on front part of signature
• Aft area shows slight deviation at lower Mach

Mach 1.4, AOA = 2.1°, H/L = 3.1435

Model Signature

Strut
Signature

Internship Thoughts

• Future Improvement

- Automation of mesh preparation process

- Possibility of using pointwise as an unstructured grid generator

- Developing more in-house scripts for key programs

- Implementing best practices for new hires

- One on one's with interns for more knowledge transfer

Will Bowes

- Getting out of my comfort zone
- My group
- NASA resources

Bob Comstock

- Working with people of various expertise
-Application of new theories
-Vast software usage (LAVA, STAR-CCM+,
ANSA, Pointwise, Bash and Tecplot)

Thanks/Acknowledgements

• James Jensen - LAVA Research engineer/scientist

• Daniel Maldonado - LAVA Junior Research engineer/scientist

• Don Durston - Unitary Wind Tunnel Engineer

• Dr. Cetin Kiris - LAVA group lead and TNA branch chief

